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Abstract

We focus on a design-of-experiments methodology for developing
empirical performance models of GPU kernels. Recently, we devel-
oped an iterative active learning algorithm that adaptively selects pa-
rameter configurations in batches for concurrent evaluation on CPU
architectures in order to build performance models over the parameter
space. In this paper, we illustrate the adoption of the algorithm when
concurrent evaluations are not possible, which is particularly useful in
the absence of GPU clusters. We present an empirical study of the
algorithm on a diverse set of GPU kernels and hardware. We show
that even when concurrent evaluations are not possible, the default
batch mode of the algorithm yields better models and the iterative
active learning algorithm reduces the overall time required to obtain
high-quality empirical performance models for GPU kernels.

1 Introduction

The introduction of general-purpose computations on graphics processing
units (GPUs) has provided considerable performance gains for algorithms
exposing fine-grained parallelism. The raw computing performance (in terms
of floating-point operations per second) in concert with the memory band-
width of recent hardware generations enable performance improvements of
about an order of magnitude over conventional central processing units
(CPUs). However, mapping even conceptually simple linear algebra op-
erations, such as matrix-vector or matrix-matrix multiplications, to the un-
derlying hardware can be difficult.

A key challenge is overcoming the high cardinality of the set of kernel
instantiations, which vary, for example, in details such as block sizes for
better cache reuse and the number of concurrent threads [9, [14]. Although
empirical autotuning approaches have been employed for GPUs, these ap-
proaches can suffer from long execution times because of the high number
of candidate compute kernels [7]. Consequently, performance portability of
GPU computing can present a significant burden for application developers,



who seek to provide capabilities that will also work efficiently on a variety of
architectures. Performance modeling is a promising approach for achieving
this goal and may provide a much more efficient methodology for coping
with high-dimensional search spaces.

We focus on a particular performance modeling task, where we predict
the outputs of new configurations on an existing machine, a task that we
distinguish from performance modeling tasks aimed at predicting perfor-
mance on new architectures. When analytical performance models, which
use mathematical abstractions for predicting performance metrics, become
too restrictive, empirical performance modeling is an effective alternative.
In empirical performance modeling, a set of parameter configurations (code
variants) is evaluated on the target device to measure the required per-
formance metrics, and a predictive model is built by using statistical ap-
proaches. We refer to these approximate models as surrogate models.

We previously developed an iterative algorithm, ab-dynaTree, that builds
surrogate models for performance modeling using active learning [I]. The
ab-dynaTree algorithm is based on dynamic regression trees [10], a method-
ology combining regression trees and Bayesian inference. Regression trees
recursively partition a multidimensional input space into hyper-rectangles
such that nearby inputs with similar output values fall within the same
hyper-rectangle. Bayesian regression trees [3] are specified by a prior dis-
tribution on how the input space can be recursively partitioned, and a like-
lihood comprising a product of simple, independent regression models is
applied in each partition. A dynamic regression [I0] tree can perform in-
ference for the tree sequentially, as input-output pairs become available.
Dynamic trees are particularly useful in active learning contexts, namely,
where heuristics are used to guide the selection of inputs at which outputs
are gathered for model fitting. Active learning is an example of a sequential
design of experiments.

The specific active learning heuristics used in this paper are presented
in [I], and we ask the reader to refer to that paper for a detailed exposition
of the resulting ab-dynaTree algorithm. A high-level description follows.
At each iteration of ab-dynaTree, a dynamic tree model obtained through
updates of the fits in previous iterations is used to choose the next inputs
for training. The model-estimated average reduction in predictive variance
is used to rank candidate configurations for inclusion in the training data.
The novelty of ab-dynaTree, compared with similar methods described in
[10], consists of choosing candidate parameter configurations in a sequence
of multiconfiguration batches. Batching takes advantage of multinode cluster
computing environments by evaluating multiple configurations concurrently,



thereby reducing the overall /wall-clock time required to obtain high-quality,
fitted surrogate models. But choosing the right batch presents a number of
challenges not addressed by earlier work.

In this paper, we apply ab-dynaTree to obtain surrogate models for GPU
kernels when concurrent evaluations are not possible, that is, in the absence
of availability of a GPU cluster. We present an empirical analysis of the
ab-dynaTree algorithm with several GPU kernels and on different graphics
cards and illustrate the algorithm’s effectiveness in this context. The two
main contributions of the paper are as follows:

e Empirical evidence that, because of the increased exploration capa-
bilities, the default batch strategy in ab-dynaTree provides significant
benefits over the classical sequential strategy even when concurrent
evaluations are not possible

e Adoption of an active learning approach for obtaining surrogate mod-
els for GPU kernels and an empirical study spanning a diverse set of
GPU kernels and graphic cards

The primary advantage of the iterative active learning algorithm is that
it can significantly reduce the overall time required to obtain high-quality
empirical performance models.

2 The GPU Kernels

Table [I] summarizes the GPU kernels and corresponding target hardware
that we use to evaluate ab-dynaTree. We refer to a problem as a specific
combination of a kernel and a GPU.

The problems vcl, vc2, ve3, and vec4 correspond to an OpenCL imple-
mentation of the vector copy operation x < y (for vectors of size 4 million)
with configurable local work group sizes and numbers of work groups at fine
granularity. Both the increments of the local size and the number of work
groups are considered in increments of 16 units. In addition, two different
thread assignments are available. The first assigns a chunk of memory to
all thread groups and then moves all work groups to the next chunk; in the
second strategy, one work group operates on consecutive memory only.

The problem vdot performs the dot product of two vectors, a + x - y;
axpy is a scaled vector addition, y < ax + y; and spmv is the product of a
banded, sparse matrix and a vector, y < Ag;, X . Each of these kernels was
implemented in CUDA. The performance-affecting parameters considered



Table 1: Problem set used for the experimental analysis.

Problems  Operations Graphic Card # Param. Valid Configs.
X
vcl vector copy Nvidia GeForce GTX 285 4 2,560
vc2 vector copy Nvidia GeForce GTX 470 4 2,560
vc3 vector copy Nvidia Tesla C2050 4 2,560
vcd vector copy AMD Radeon HD 7970 4 2,560
vdot vector dot product Nvidia Tesla C2050 6 6,144
axpy vector-scalar product  Nvidia Tesla C2050 6 7,680
spmv sparse matrix-vector Nvidia Tesla K20X 4 10,752
mml matrix multiplication = Nvidia GeForce GTX 470 10 8,465
mm?2 matrix multiplication ~AMD Radeon HD 7970 10 3,568

for each included the number of threads in a block, the number of blocks in
a grid, the configurable size of the L1 cache, and compiler flags.

The problems mm1 and mm2 consist of dense matrix-matrix multiplica-
tion on two different GPUs. The OpenCL implementations of these kernels
[11] reside in a ten-dimensional parameter space. These parameters allow
for fine-grained control over block dimensions, loop unrolling, vector data
types, and the use of on-chip shared memory. Although the total number
of possible parameter configurations for each kernel is large (in the range
of 20,000), many are “invalid” configurations, such as those exceeding the
available shared memory or with block dimension mismatch. The invalidity
of these configurations is known before empirical evaluation, and hence the
invalid configurations were pruned from the parameter configuration space.
The number of valid configurations |AX),| for each each problem is given in
Table [l

3 Experimental Results

We build surrogate models to minimize execution times of our benchmark
problems. Since the kernels are executed in sequence on a single device and
concurrent evaluation of parameter configurations is not possible, one can
choose the classical sequential design-of-experiments approach that updates
the model after each evaluation. This “serial version” of ab-dynaTree can
be obtained by simply setting the batching parameter n, = 1. However, the
default mode of ab-dynaTree runs with n; > 1; in the absence of concur-
rent evaluation capabilities, the model is updated only after these n; serial
evaluations have been performed.

In all experiments we run our ab-dynaTree algorithm with a maximum
budget of 1,000 evaluations. By X,y and Vo, we denote the set of 1,000



configurations and their corresponding execution times, respectively. To
simplify our experimental setup and facilitate validation, for each problem
we evaluate all valid configurations X}, and store the results ), in a lookup
table, which is then queried by the algorithm and validation methodology.

To assess the quality of training points selected by ab-dynaTree, we use
three regression algorithms implemented in R [4]: the dynaTree algorithm
(dT) with 10 repetitions (as recommended by the package authors [5]) and
taking the prediction at each x as the mean of the 10 predictions; random
forest (rf) |2, B], a state-of-the-art, robust, tree-based regression approach;
and neural networks (nn) [I3], a widely used nonlinear regression approach
that has been used for empirical performance modeling in other settings [12].
For each algorithm, we consider two variants: al, in which points (Xout, Yout)
obtained from ab-dynaTree are used to train the three regression algorithms,
and rs, in which 1,000 randomly selected points from (X}, )),) are used
for train the regression algorithms. The default parameter values are used
for dT and rf. Since the prediction accuracy of nn variants with default
parameter values is poor, we run a computationally expensive subsidiary
parameter tuning procedure [6] as suggested in [12].

We use the root-mean-squared error (RMSE) as a measure of prediction
accuracy. To reduce the impact of randomness, we repeat each variant
10 times and consider the prediction accuracy of a variant as the RMSE
averaged over 10 repetitions. A t¢-test is then applied to check whether the
observed differences in the prediction accuracy of the variants are significant.

To allow cross-comparison of prediction accuracy between the problems,
we scale the runtime values for each problem: each y; is divided by y;, ..,
where y;_.. is the maximum execution time in },. For the active learning
variants, we use 1,000 data points (Xout,Vout) as the training set to build
the surrogate model. We derive two test sets from the remaining points: (i)
the subset of data points 7950, whose mean run times are within the lower
25% quartile of the empirical distribution for the run times of ), and (ii) a
set Tigow of all remaining points. For the random sampling variants, we use
the same test sets To50, and Tggy but a different training set, with the 1,000
points for training being randomly chosen from (X}, Y,) — Ta59 (where the
- — - denotes a set difference).

First, we examine the impact of the batch size n; in ab-dynaTree in
terms of RMSE. To this end, we run tests with n; € {1,50,100,200}. The
training points obtained from ab-dynaTree are passed to dT(al), and each
(different ny) version starts with an initial sample of size 100. The results are
shown in Figure[I] Using a large batch size results in ab-dynaTree allowing
dT(al) to achieve lower RMSE with fewer training points. On 7 out of
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Figure 1: Average RMSE for diéerent model update frequencies in

ab-dynaTree on the test set To5;.



Table 2: RMSE averaged over 10 replications on the 7559 test set for 1,000
training points. The value is typeset in italics (bold) when a variant is sig-
nificantly worse (better) than dT(al) according to a t-test with significance
(alpha) level 0.05.

Problem dT(al) dT(rs) mnn(al) nn(rs) rf(al) rf(rs)

vel 0.035 0.050 0.036 0.044 0.122 0.179
vc2 0.041 0.067 0.039 0.058 0.187 0.178
ve3 0.124 0.201 0.131 0.178 0.262 0.372
vcd 0.026 0.043 0.031 0.088 0.124 0.153
vdot 0.009 0.014 0.010 0.016 0.012 0.021
axpy 0.014 0.022 0.012 0.017 0.016 0.029
spmv 0.002 0.003 0.002 0.008 0.008 0.014
mm1 0.029 0.045 0.027 0.040 0.028 0.046
mm?2 0.036 0.053 0.030 0.048 0.031 0.052

the 9 problems, we find that updating the model immediately after each
evaluation (np, = 1) is not beneficial. This result can be attributed to the
fact that large n; values allow ab-dynaTree to explore and identify multiple
regions in the input space with high-performing parameter configurations.
However, with n; = 1 ab-dynaTree has fewer exploration capabilities: there
is a high probability of sampling from only one promising region of the input
space. On vcl, the differences are negligible; but on vc4, ab-dynaTree with
np = 1 outperforms those versions with larger batch sizes. In the rest of this
section, we run ab-dynaTree with a batch size ny of 200.

Now, we compare the three regression algorithms. Table[2]shows RMSEs
averaged over 10 replications for 1,000 training points and tested on Ta5.
We observe that the active learning (al) variants of dT, rf, and nn obtain
lower RMSE than do their corresponding random sampling (rs) variants.
The results also show that dT(al) completely dominates the three random
sampling variants dT(rs), nn(rs), and rf(rs). Except for mm2, dT'(al) obtains
lower average RMSE than does rf(al). However, no statistically significant
difference between dT(al) and nn(al) was detected by the ¢-test. The high
performance of nn(al) can be attributed to the subsidiary parameter tuning
procedure, which may be computationally infeasible in practical settings.

The key advantage of dT'(al) is illustrated in Figure [2] which shows the
RMSE as a function of the number of training points. We see that dT(al)
requires relatively fewer evaluations to achieve a smaller RMSE. In Figure
we compare the number of evaluations required by the variants to reach the
RMSE obtained by dT(rs) (with 1,000 evaluations). On 7 out of 9 problems,
dT(al) reaches the RMSE of dT(rs) within 300 to 700 training points. Only



for mm1 and mm2 does rf(al) outperform dT(al).

Figure [4 shows the correlation between the observed and predicted val-
ues of dT(al) on Tyggy. We note that dT(al) adopts an (optional) biased
sampling procedure (see [I] for details) to model configurations with good
performance and higher prediction accuracy by sacrificing the prediction ac-
curacy of configurations with poor performance. Consequently, the accuracy
of predicted values decreases with an increase in the observed values.

4 Conclusion

We have presented an experimental study of ab-dynaTree, an iterative active
learning algorithm, for developing empirical performance models of GPU
kernels. We demonstrated that even when concurrent evaluations of code
variants are not possible, the default batch mode of ab-dynaTree, which al-
lows for a higher degree of parameter space exploration, provides significant
benefits over the classical, serial mode of ab-dynaTree. We showed that the
ab-dynaTree algorithm can significantly reduce the overall time (up to a fac-
tor of 3 when compared with naive random sampling) required to obtain
empirical performance models for GPU kernels.

Our future work for ab-dynaTree includes asynchronous model updates,
multiobjective surrogate modeling (e.g., for run time, power consumption,
bandwidth, and FLOPS simultaneously) with a single run of ab-dynaTree,
and deployment of ab-dynaTree within autotuning search algorithms.
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Figure 2: RMSE for various GPU kernels on the test set To50,. The dotted
lines represent the RMSE for each replication, and the bold lines represent
the mean RMSE over 10 replications9



Figure 3: Number of evaluations required to reach the RMSE of dT(rs)

(with 1,000 evaluations) on the test set Ta59.
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